
Threads vs Processes

Andrew Tridgell
tridge@samba.org

“Aren't threads faster?”

● A very common question but a complex
answer

● Faster for what?
● What do threads/processes actually do?
● What can the hardware do?

● Systems programming
● Answering this question reveals a lot about systems

programming
● I hope it will also make you think a bit about how

operating systems work

What is a thread/process?

● An abstraction of a unit of execution
● We'll generically call them both 'tasks'

● What is in a task?
● Instructions to execute
● Memory (shared and non-shared)
● File descriptors
● Credentials
● Locks
● Network resources

● Relationship to CPUs
● Many/most computers have more than 1 CPU now
● It is common to have many tasks per CPU

The key differences

● Threads
● ???

● Processes
● ???

The key differences

● Threads
● Will by default share memory
● Will share file descriptors
● Will share filesystem context
● Will share signal handling

● Processes
● Will by default not share memory
● Most file descriptors not shared
● Don't share filesystem context
● Don't share signal handling

Underneath the hood

● On Linux, both processes and threads are
created with clone()

Creating a thread:

clone(child_stack=0x420cc260, flags=CLONE_VM|CLONE_FS|
CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|
CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID,
parent_tidptr=0x420cc9e0, tls=0x420cc950, child_tidptr=0x420cc9e0)

Creating a process:

clone(child_stack=0, flags=CLONE_CHILD_CLEARTID|
CLONE_CHILD_SETTID|SIGCHLD, child_tidptr=0x7f4936ecc770)

A Sample Workload

● A network media server
● Clients connect, and transfer images/videos/music
● Users login with their own accounts
● Files stored in a local filesystem

● What work needs to be done?
● ???

Network Media server

● What work needs to be done
● Computation: for format conversions etc
● Memory manipulation
● File IO
● Database access?
● Locking
● Network IO
● Credential handling

● Should it use threads?

malloc()

● Memory allocation
● Extremely common task in almost all programs

● What work needs to be done?
● ???

malloc()

● What work needs to be done?
● Possibly grab more pages from the OS
● Lock data structures?
● Find a free region
● Initialise a block header?

● Are locks needed?
● ???

malloc()

● Are locks needed?
● For threads, locks are needed for most data structure

manipulations in malloc()
● Kernel needs locks for page allocation
● Processes need no user space locks for malloc()

read()/write()

● What about file IO?
● is file IO different in threads vs processes?

● What does an OS need to do for file IO?
● ???

Hint: Common IO system calls

ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);

read()/write()

● What does an OS need to do for file IO?
● Map from file descriptor to file structure
● Copy data to/from page cache
● Possibly initiate disk IO

● How do you map from a fd to a file?
● Simple array? Tree structure?
● Either way, it needs locking
● With threads that can give contention

Hardware vs Software

● What about the MMU?
● Memory Management Unit
● Gives hardware memory protection between tasks
● Virtualises memory addressing

● Another way to look at things
● Threads use software to protect data structures
● Processes use hardware to protect data structures

thread_perf

● Threads vs processes benchmark
● http://samba.org/~tridge/junkcode/thread_perf.c

● Compares common tasks
● malloc, setreuid, readwrite, stat, fstat, create etc.

● Thread library
● Linking to a thread library can matter for processes!

http://samba.org/~tridge/junkcode/thread_perf.c

setreuid()

● A very interesting case
● setreuid() used to change task credentials
● Posix requires change of all thread credentials
● Applications often want to change just one task

● thread_perf result
● setreuid() with threads over 200x slower on Linux
● Why??

Memory Footprint

● The memory hierarchy matters
● How much faster is memory than disk?
● What about cache memory vs main memory?

● Reducing memory footprint
● Allows more tasks to run
● May give better use of cache

● Threads
● Easier to pack structures in shared memory
● Less fragmentation of memory?
● May use less memory?

Conclusions

● Non-obvious choice
● Threads and processes have significant differences
● Which is best depends on the application

● Systems programming matters
● Think about the OS level implementation!
● Learn to use strace!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

