CTDB

Andrew Tridgell

(and Volker, Ronnie, Jim, Sven, Peter)

I Clustering? What's that?

e each node has its own local storage and
memory

« 3 'fast' network is available (of the order of
microsecond latency)

* Shared filesystem
 all nodes also have access to a shared
filesystem
« shared filesystem is assumed data coherent, but
may be slow at some operations (like locking)

I « Want to use N compute nodes

I Scaling

« we want N+1 nodes to perform better than N
nodes, for some range of N

« we want 2 nodes to perform better than best
non-clustered approch for a single node

e Cluster size

 in practice, we are aiming for clusters up to
approximately 100 nodes

I * Positive Scaling

I Protocol Coherence

constraints

 all read/write calls use mandatory locking
* file operations are strongly ordered

« Not like NFS

* NFS servers and clients commonly assume that
If meta data is recent it is still valid

I SMB protocol has strong coherence

I Current Architecture

 multiple smbd daemons, one per client

« each daemon attached to a number of
databases

« databases store all shared meta-data

* Clustering this should be easy!
 why not just use a cluster database?
« each smbd talks to cluster database instead of
local database
» obvious solutions can be wrong :)

I * Multi-process server

I Samba Databases

e Total of about 20 in normal install

» Most performance sensitive:
* pyte range locking
« open files
* messaging

I e Lots of small databases

I Current TDB

« similar in concept to berkley db
e records have a single binary key
* records are binary blobs

» very fast
e uses shared memory (mmap)
 fcntl byte range locking for coherence
« often achieves 100k to 500k operations/second

I » key-value database

I Precious data?

database preserve when a node dies?
- all of it!

« How Is this achieved?

« all data must either be on all nodes, or on stable
shared storage

 this means that all write operations must be
VERY SLOW

 What about clustered filesystems?
 Same constraints, same problem

I « What data does a normal clustered

I Losing Data Safely

* yes!
* pbut only the right data

 Safe to lose

 If node N goes down, we can lose data
associated with open connections on node N
« open files, locks, messages to node N

 Data Recovery

e data stored on node N but not associated with
node N can be recovered from other nodes

I e Can clustered Samba survive data loss?

I Remote Locking

» get lock on data

» perform operation

e possibly update
 release lock on data

« Remote data

« when data is remote, this makes for an inherant
bottleneck
« Remote locking is evil!

« Solution?

» send the function to the data
* never hold a lock during a network operation

I Normal pattern in a cluster

CTDB API

« RPC-like API

 'calls' are like database stored procedures
 all calls are associated with a data record

e a call receives call data and record data

e can return arbitrary data, plus update record

 fetch lock API

. fetches a locked record

struct ctdb context *ctdb init(struct event context *ev);
int ctdb set transport (struct ctdb context *ctdb, const char *transport);
int ctdb set call(struct ctdb context *ctdb, ctdb fn t fn, int 1d);
int ctdb call (struct ctdb db context *ctdb db, struct ctdb call *call);
void *ctdb fetch lock(struct ctdb db context *ctdb db,
TALLOC CTX *mem ctx, TDB DATA key,
TDB DATA *data);

(API has been simplified for this slide)

CTDB architecture

Clustered TDB

* each node uses a local tdb (ltdb) for storage
 [tdb is in memory, or local storage

LMASTER

« LMASTER == location master
e location master knows where a record is stored

DMASTER

« DMASTER == data master
« data master holds data for a record

Backends

« TCP and Infiniband backends
* async, event driven API

Dispatcher Daemon

Clustered Samba: dispatcher daemon

MNode n

I
y Local tran

I Record Migration

« LMASTER is based on record key only
« LMASTER knows where the record is stored
e new records are stored on LMASTER

- DMASTER moves

« DMASTER owns data for a record
* remote call can triggera DMASTER move

N consecutive requests by the same node
causes DMASTER move to that node

I - LMASTER fixed

I fetch lock

 fetches a locked record

» store/unlock operations to complete

* pbuilt on top of ctdb call, with special migration
flag

* Needed for

e fitting with Samba3 clustering model
* used in open database in Samba4

I « Wanted to avoid this, but couldn't :-(

I ltdb shortcut

* 1) get record chainlock

« 2) check if we are the dmaster

« 3) if dmaster, then operate locally, with lock
held

e 4) if not dmaster, then need to talk to ctdb
daemon via unix domain socket

 local-equivalent speed

e result is that non-contended access runs at
same speed as non-clustered operation

I shortcut for direct tdb access

Scaling Results

 NBENCH test

- 16 clients
- 1 to 4 nodes

OLD (pre-CTDB) approach

1 node 30.0 Mbytes/sec
2 nodes 2.1 MBytes/sec
3 nodes 1.8 MBytes/sec
4 nodes 1.8 MBytes/sec

NEW (CTDB) approach

1 node 42 Mbytes/sec
2 nodes 168 MBytes/sec
3 nodes 211 MBytes/sec
4 nodes 243 MBytes/sec

I Demo!

* 4 nodes

« ctdb used for byte range locking, messaging
and open files database

« works with both Samba3 and Samba4

o testing with smbtorture tests

I early days, but it does work!

I Questions?

I e For more information on CTDB see

http://wiki.samba.org/index.php/Samba_ %26 Clustering

