
CTDB

Andrew Tridgell

(and Volker, Ronnie, Jim, Sven, Peter)

Clustering? What's that?

● Want to use N compute nodes
● each node has its own local storage and

memory
● a 'fast' network is available (of the order of

microsecond latency)
● Shared filesystem

● all nodes also have access to a shared
filesystem

● shared filesystem is assumed data coherent, but
may be slow at some operations (like locking)

Scaling

● Positive Scaling
● we want N+1 nodes to perform better than N

nodes, for some range of N
● we want 2 nodes to perform better than best

non-clustered approch for a single node
● Cluster size

● in practice, we are aiming for clusters up to
approximately 100 nodes

Protocol Coherence

● SMB protocol has strong coherence
constraints

● all read/write calls use mandatory locking
● file operations are strongly ordered

● Not like NFS
● NFS servers and clients commonly assume that

if meta data is recent it is still valid

Current Architecture

● Multi-process server
● multiple smbd daemons, one per client
● each daemon attached to a number of

databases
● databases store all shared meta-data

● Clustering this should be easy!
● why not just use a cluster database?
● each smbd talks to cluster database instead of

local database
● obvious solutions can be wrong :)

Samba Databases

● Lots of small databases
● Total of about 20 in normal install

● Most performance sensitive:
● byte range locking
● open files
● messaging

Current TDB

● key-value database
● similar in concept to berkley db
● records have a single binary key
● records are binary blobs

● very fast
● uses shared memory (mmap)
● fcntl byte range locking for coherence
● often achieves 100k to 500k operations/second

Precious data?

● What data does a normal clustered
database preserve when a node dies?

● all of it!
● How is this achieved?

● all data must either be on all nodes, or on stable
shared storage

● this means that all write operations must be
VERY SLOW

● What about clustered filesystems?
● same constraints, same problem

Losing Data Safely

● Can clustered Samba survive data loss?
● yes!
● but only the right data

● Safe to lose
● If node N goes down, we can lose data

associated with open connections on node N
● open files, locks, messages to node N

● Data Recovery
● data stored on node N but not associated with

node N can be recovered from other nodes

Remote Locking

● Normal pattern in a cluster
● get lock on data
● perform operation
● possibly update
● release lock on data

● Remote data
● when data is remote, this makes for an inherant

bottleneck
● Remote locking is evil!

● Solution?
● send the function to the data
● never hold a lock during a network operation

CTDB API

struct ctdb_context *ctdb_init(struct event_context *ev);
int ctdb_set_transport(struct ctdb_context *ctdb, const char *transport);
int ctdb_set_call(struct ctdb_context *ctdb, ctdb_fn_t fn, int id);
int ctdb_call(struct ctdb_db_context *ctdb_db, struct ctdb_call *call);

void *ctdb_fetch_lock(struct ctdb_db_context *ctdb_db,
 TALLOC_CTX *mem_ctx, TDB_DATA key,

TDB_DATA *data);

(API has been simplified for this slide)

● RPC-like API
● 'calls' are like database stored procedures
● all calls are associated with a data record
● a call receives call data and record data
● can return arbitrary data, plus update record

● fetch_lock API
● fetches a locked record

CTDB architecture

● Clustered TDB
● each node uses a local tdb (ltdb) for storage
● ltdb is in memory, or local storage

● LMASTER
● LMASTER == location master
● location master knows where a record is stored

● DMASTER
● DMASTER == data master
● data master holds data for a record

● Backends
● TCP and Infiniband backends
● async, event driven API

Dispatcher Daemon

Record Migration

● LMASTER fixed
● LMASTER is based on record key only
● LMASTER knows where the record is stored
● new records are stored on LMASTER

● DMASTER moves
● DMASTER owns data for a record
● remote call can trigger a DMASTER move
● N consecutive requests by the same node

causes DMASTER move to that node

fetch_lock

● Wanted to avoid this, but couldn't :-(
● fetches a locked record
● store/unlock operations to complete
● built on top of ctdb_call, with special migration

flag
● Needed for

● fitting with Samba3 clustering model
● used in open database in Samba4

ltdb shortcut

● shortcut for direct tdb access
● 1) get record chainlock
● 2) check if we are the dmaster
● 3) if dmaster, then operate locally, with lock

held
● 4) if not dmaster, then need to talk to ctdb

daemon via unix domain socket
● local-equivalent speed

● result is that non-contended access runs at
same speed as non-clustered operation

Scaling Results

● NBENCH test
– 16 clients
– 1 to 4 nodes

OLD (pre-CTDB) approach
1 node 30.0 Mbytes/sec
2 nodes 2.1 MBytes/sec
3 nodes 1.8 MBytes/sec
4 nodes 1.8 MBytes/sec

NEW (CTDB) approach
1 node 42 Mbytes/sec
2 nodes 168 MBytes/sec
3 nodes 211 MBytes/sec
4 nodes 243 MBytes/sec

Demo!

● early days, but it does work!
● 4 nodes
● ctdb used for byte range locking, messaging

and open files database
● works with both Samba3 and Samba4
● testing with smbtorture tests

Questions?

● For more information on CTDB see

http://wiki.samba.org/index.php/Samba_%26_Clustering

